Индукция

«...Наши теории никоим образом не построены из логически неопровержимых истин; напротив, они состоят из более или менее произвольных картин, рисующих связь явлений, именно — из так называемых гипотез... Это относится как к старым теориям, многие из которых в настоящее время являются спорными, так и к самым новейшим, жестоко ошибающимся, если они мнят себя свободными от всяких гипотез».

Из приведенных выше высказываний великих творцов науки XIX века однозначно вытекала их оценка роли индукции как метода научного познания: индукция не является и не может быть методом открытия и доказательства научных законов и теорий. В лучшем случае она выполняет только функцию их вероятного подтверждения опытными данными, фиксируемыми в единичных или частных эмпирических высказываниях. Для большинства ученых XX века эта методологическая идея становится аксиомой. Их позиция четко сформулирована А. Эйнштейном: «Здесь не существует метода, который можно было бы выучить и систематически применять для достижения цели. Исследователь должен скорее выведать у природы четко формулируемые общие принципы, отражающие определенные общие черты огромного множества экспериментально установленных фактов».

В XX веке в философии науки были предприняты существенные усилия по исследованию индукции как метода подтверждения научных законов и теорий. Центральной проблемой здесь явилась прежде всего логическая и методологическая экспликация понятия «подтверждение». Существуют две основных экспликации (интерпретации) данной категории. Первая интерпретирует «подтверждение» в духе традиционного понимания индукции как способа аргументации (вывода) от частного к общему. При этом не имеет значения конкретный вид этой аргументации (перечислительная индукция, элиминативная индукция или индукция как обратная дедукция). С этой точки зрения «подтверждением» является любой способ аргументации от А к В, когда обратный способ аргументации от В к А является дедукцией, понимаемой как логически необходимый вывод от более общего к менее общему (частному) знанию. Именно такое понимание «подтверждения» соответствует, на наш взгляд, его употреблению в реальной науке, например, когда говорят, что некоторый закон или теория «подтверждены» или «хорошо подтверждены» фактами или, что теория А «лучше подтверждена» определенными фактами, чем теория В.

Другое понимание категории «подтверждение» было развито в неоиндуктивизме логического позитивизма (Дж. Кемени, Р. Карнап и др.). Согласно этому истолкованию (определению) «подтверждения», это такой тип логического отношения между двумя высказываниями А и В (независимо от их логической формы и содержания), когда:

а) между ними нет логического противоречия;

б) В логически не следует из А, а А может следовать из В, а может и не следовать.

Такое понимание «подтверждения» основано, с одной стороны, на дихотомии понятий «подтверждение» и «логический вывод», а с другой — на отождествлении понятий «логический вывод» и «дедукция». С этой точки зрения, если между любыми двумя высказываниями определенной языковой системы (например, некоторой научной теории) нет противоречия, то они находятся в отношении взаимного «подтверждения», каково бы ни было их содержание.

Такое противопоставление «подтверждения» и «дедукции» и одновременно отождествление понятий «подтверждение» и «индукция» составило концептуальную основу неоиндуктивизма — логического позитивизма, пришедшего на смену классическому индуктивизму Бэкона — Милля. Примечательно, однако, то, что и в первом варианте истолкования индукции как подтверждения и во втором варианте само «подтверждение» мыслится как двухместная логическая функция.

Весь вопрос заключается в том, может ли иметь эта функция количественную меру. Другими словами: можно ли разработать количественный способ оценки «степени подтверждения» одного высказывания (заключения, гипотезы) другим (посылками, в частности, данными опыта)? Можно без преувеличения сказать, что главные варианты решения этой проблемы в философии науки XX в. были связаны именно с попытками истолкования «подтверждения» как «вероятностной функции», «вероятностной меры».

Яндекс.Метрика