Особенности современного зтапа интеграции науки и производства

Вторая мировая война, ставшая своего рода прелюдией современного этапа интеграции, была первой из войн, в которой научный потенциал наряду с производственными и людскими ресурсами играл роль важнейшего фактора, определявшего соотношение сил воюющих сторон. Она в полной мере стала войной моторов, брони, автоматического оружия и других видов техники, вплоть до атомной бомбы, создание которых немыслимо без участия науки, с одной стороны, и без столь масштабной мобилизации ресурсов, которая под силу только государству, — с другой. В результате возникают совершенно новые отношения между государством, наукой и промышленностью. На протяжении военных лет под эгидой государства все научные учреждения и вся промышленность участвовавших в борьбе стран были объединены общей целью и совместно работали над ее достижением. В непосредственный контакт с наукой втянулось множество предприятий, до войны об этом и не помышлявших. В свою очередь, университетские и прочие лаборатории, ранее прикладными исследованиями не занимавшиеся, либо были мобилизованы правительством для участия в военных проектах, либо сами искали и использовали любую возможность в такие проекты включиться. Темп нововведений, разработки новых видов продукции и их освоение многократно возросли. Сложилась ситуация, которую можно охарактеризовать как квазиинтеграцию, обусловленную не внутренним развитием производства и науки, а временным развитием внешнего фактора — условиями войны.

После войны многие установленные во время нее связи распались, но не ушли бесследно, остался опыт, осталось понимание эффективности сотрудничества, его необходимости для успешного решения производственных проблем, осталось, наконец, главное — созревшие за военные годы наукоемкие технологии и соответствующие отрасли промышленности, которые бурно прогрессировали в последние годы, выдвигаясь на первый план в экономике передовых государств. Это электроника и вычислительная техника, создание и эксплуатация космических аппаратов, атомная энергетика и т. д. Научный задел, накопленный в военное время и открывавший множество новых перспектив в гражданских отраслях хозяйства, был неизмеримо выше уровня, достигнутого к концу 30-х годов. Кроме того, в условиях последовавшей «холодной войны» мобилизация научных и технических ресурсов во многом сохранилась.

В итоге научно-технический потенциал становится фактором, определяющим уровень и темп развития страны, ее экономическое и социальное благосостояние, конкурентоспособность на мировой арене, военную мощь. Сегодня продукция наукоемкого производства, передовая техника и технология буквально пронизывают все стороны жизнедеятельности людей. В этом — фундаментальная особенность современного периода интеграции науки с производством. Ею определяются и ряд других характеристик периода, каждая из которых выступает не только как следствие основной, но и сама по себе играет важную роль в жизни современного общества. К ним относятся следующие.

1. Отмеченные изменения в структуре производительных сил вызывают перемены в сфере управления общества и производством как на уровне государственных структур (по всем основным ступеням иерархической лестницы), так и на уровне фирм и корпораций. Сразу же после войны в рассматриваемых нами странах начинают формироваться системы государственных органов, задачей которых является разработка и реализация государственной научно-технической политики. Создание таких систем — процесс длительный и сложный, в каждой стране он проходит в соответствии со спецификой ее государственного устройства, отражающей особенности исторически сложившейся модели общества. Применительно к отдельным государствам он анализируется автором. Общее направление этого процесса — от центра к региональным и местным структурам с постепенным расширением и углублением функций, охватом новых типов взаимоотношений между наукой и обществом по мере их возникновения и осознания. С точки зрения создания благоприятных условий для развития процесса интеграции науки с производства, это означает качественное изменение в позитивном направлении, отличающее современный этап от предыдущих.

2. Резко возрастает объективная потребность общества в наращивании темпов НТП. Во-первых, потому, что ныне от них непосредственно зависит состояние и производства, и сферы обслуживания в самом широком толковании этого слова, а также уровень жизни людей и ее продолжительность. Во-вторых, потому, что в ходе НТП возникает множество серьезных угроз обществу. Масштабы хозяйственной деятельности, мощь накопленного военного разрушительного потенциала, появление возможностей влияния на генофонд растений, животных и самого человека — все это ведет к появлению крупных экологических проблем, к конфликту между человечеством и средой его обитания, потенциально угрожающему самому существованию жизни на нашей планете. Устранить негативные последствия НТП, ограничить их появление в будущем, предотвратить экологическую катастрофу можно лишь на основе научных подходов и «наукофикации» всех сторон общественной практики.

3. Сама наука во всех ее ипостасях превращается в крупную отрасль национального хозяйства, поглощающую заметную часть людских и материальных ресурсов общества. Сфера науки достигает масштабов, невиданных для прошлых веков и тысячелетий. Достаточно отметить, что 90 процентов всех ученых, когда-либо существовавших в мире, являются нашими современниками, живут и работают сегодня. В научные исследования и разработки вовлечены миллионы людей, расходы на ИР в промышленно развитых странах составляют порядка 3% от валового национального продукта. Для поддержания темпов НТП и дальнейшего развития сферы науки требуется все больше затрат.

О темпах НТП и проблеме его стоимости. Еще в самом начале нашего столетия Генри Б. Адаме (США), опираясь скорее на интуицию, чем на статистику, сформулировал положение о том, что прогресс общества. в том числе прогресс науки, происходит нелинейно, подобно тому, как растет капитал при начислении сложных процентов: выраженная в процентах величина ежегодного прироста является во времени постоянной и, следовательно, за определенное число лет исходный объем удваивается, утраивается и т. д. Другими словами, развитие науки и техники описывается показательной функцией.

Хотя первоначально высказанная Адамсом оценка была воспринята скорее как образное выражение, чем как закономерность, постепенно начали накапливаться данные, убедительно подтверждавшие его догадку. В 1930-е и особенно в послевоенные годы многие исследователи (Ф. Рихтмайер, К. Мис, Дж. Прайс, Н. Решер, Г. Монард, и др.) обнаруживали экспоненциальный рост многих количественных показателей развития науки. Установлено, например, что число научных работников в мире, число членов научных ассоциаций, число научных журналов, объем литературы по большинству естественно-научных дисциплин удваивается каждые 15 лет, объем публикаций в наиболее активных проблемных областях естественных наук — каждые 12 лет, как и число научных работников в США, за десять лет возрастает вдвое по математике, объем книг в университетских библиотеках, численность американских инженеров, число присуждающих в США докторских степеней в области науки и техники; в первые послевоенные десятилетия чрезвычайно бурно росли ассигнования на науку, как со стороны правительства, так и промышленных корпораций, в США государственный бюджет ИР увеличивался в 50-е и 60-е годы в среднем на 10% ежегодно, то есть удваивался за 1 лет.

Экспоненциальное увеличение входных и выходных параметров науки создает картину научно-информационного «взрыва», характерного для большей части нынешнего века. Однако, если проанализировать структуру этого «взрыва» и принять во внимание не только количественные показатели, но и те качественные аспекты, которые определяют ее когнитивную сущность, то выясняется, что при экспоненциальном росте массовой рутинной продукции число крупных открытий, являющихся своего рода вехами в истории той или иной научной дисциплины и отмечающих новые уровни познания природы, растет не по экспоненте, а лишь по линейному закону. Косвенным, но убедительным доказательством линейного накопления первоклассных достижений в науке является постоянство числа нобелевских премий и иных престижных наград, присуждаемых из года в год.

Этому феномену, который наглядно прослеживается на фактическом материале, есть фундаментальное объяснение, ибо он полностью согласуется с законом Руссо, сформулированном в его «Общественном договоре». В отечественной литературе данный аспект взглядов Руссо раньше не акцентировался и мало известен. Согласно упомянутому закону, во всякой совокупности однотипных явлений существует элитарная часть, численность которой равна корню квадратному из общей численности совокупности. Подмеченная Руссо закономерность с приемлемой точностью наблюдается в соотношении общего числа, допустим, вузов какой-нибудь страны и их элитарной группы, общей численности специалистов конкретной профессии и числа «светил» и «звезд» в ней, в соотношении крупных городов и общего числа населенных пунктов и т. п. Таким образом, при экспоненциальном наращивании вкладываемых в развитие научно-технической сферы ресурсов результат, если его измерять числом первоклассных открытий и изобретений, меняется линейно.

Уместно, видимо, подчеркнуть, что, хотя решающую роль в развитии науки играют первоклассные, как мы их определили, открытия, они не могут появиться в отрыве от общего объема результатов научно-технической деятельности, а только как часть этого объема, включающего результаты всех категорий качества — от рутинных до первоклассных. Общий объем результатов можно представить себе как некую пирамиду, а уровни качества — как плоскости, параллельные ее основанию. Первоклассные открытия составляют верхний слой пирамидального объема, отмеченный верхним уровнем качества. У каждого иного слоя свои функции в обслуживании НТП. и все они по-своему важны и необходимы. Мы не можем произвольно разделить такую структуру на части и направить ресурсы на какой-то один выбранный нами уровень, вырастет все та же пирамида с тем же соотношением слоев.

Яндекс.Метрика