Формализация

Все это указывало на необходимость разработки некоторого другого способа доказательства непротиворечивости аксиоматически построенных теорий. С его разработкой в трудах Г. Фреге и Д. Гильберта окончательно сформировался современный взгляд на аксиоматический метод.

Обращаясь к проблеме непротиворечивости аксиоматически построенных теорий, Д. Гильберт пытался решить задачу следующим образом: показать относительно некоторой заданной системы аксиом (той или иной рассматриваемой математической теории), что применение определенного, строго фиксированного множества правил вывода никогда не сможет привести к появлению внутри данной теории противоречия. Доказательство непротиворечивости,той или иной системы аксиом, таким образом, связывалось уже не с наличием некоторой другой непротиворечивой теории, могущей служить интерпретацией данной системы аксиом, а 1) с возможностью описать все способы вывода, используемые при логическом развертывании данной теории, и 2) с обоснованием логической безупречности самих используемых средств вывода. Для осуществления этой программы надо было формализовать сам процесс логического рассуждения.

Возможность формализации процесса рассуждения была подготовлена всем предшествующим развитием формальной логики. Особо важное значение в деле подготовки возможности формализации некоторых сторон процесса логического рассуждения имело обнаружение того факта, что дедуктивные рассуждения можно описывать через их форму, отвлекаясь от конкретного содержания понятий, входящих в состав посылок.

Первоначальный этап развития теории формального вывода связан с именем Аристотеля. Он впервые ввел в логику переменные вместо конкретных терминов, и это позволило отделить логические формы рассуждения от их конкретного содержания. С середины XIX в. был сделан решительный шаг к замене содержательного рассуждения логическим исчислением, а тем самым — к формальному представлению процесса рассуждения. В работах Г. Фреге логика строится в виде аксиоматической теории, что позволяет достичь значительно большей строгости логических рассуждений. В исчислениях современной формальной логики метод формального рассмотрения процесса рассуждения получает свое дальнейшее развитие.

Таким образом, возможность формализации отдельных отраслей научного знания подготовлена длительным историческим развитием науки. Потребовалось более чем две тысячи лет для того, чтобы оказалось возможным представить некоторые научные теории в виде формальных систем, в которых (если в этом возникла потребность) дедукция может совершаться без какой-либо ссылки на смысл выражений или значение понятий формализуемой теории. Сама же потребность в формализации возникает перед той или иной наукой на достаточно высоком уровне ее развития, когда задача логической систематизации и организации наличного знания приобретает первостепенное значение, а возможность реализации этой потребности предполагает огромную предварительную работу мышления, совершаемую на предшествующих формализации этапах развития научной теории. Именно эта огромная содержательная работа мышления, предваряющая формализацию, делает возможной и плодотворной замену содержательного движения от одних утверждений теории к другим операциям с символами.

Формальные системы, получающиеся в результате формализации теорий, характеризуются наличием алфавита, правил образования и правил преобразования. В алфавите перечисляются исходные символы системы. Требования, налагаемые на эти исходные символы, таковы: они, во-первых, должны быть конструктивно жесткими, чтобы мы всегда умели эти символы как отождествлять, так и различать; во-вторых, список исходных символов должен быть задан так, чтобы всегда можно было решить, является ли данный символ исходным.

Яндекс.Метрика