Математическое моделирование

Модели объяснения представляют собой качественно иной вид познавательных моделей. Речь идет о тех случаях, когда структура объекта (или система) находит себе соответствие в математическом образе в силу внутренней необходимости. Здесь модель есть уже нечто большее, чем простая эмпирическая подгонка, ибо она обладает способностью объяснения.

Если математический формализм адекватно выражает физическое содержание теории и выступает моделью объяснения, то он становится не только орудием вычисления и решения задач в уже известной области опыта, но и средством генерирования новых физических представлений, средством обобщения и предсказания. Например, из уравнений Ньютона можно вывести закон сохранения импульса, из уравнений Максвелла — идею о физическом родстве электромагнитных и оптических явлений, из уравнений Дирака — существование позитрона и т. д. Этот эпистемологический феномен Ю.Б. Румер и М.С. Рыбкин называют «принципом гносеологического продолжения».

Рассмотрим характерные гносеологические свойства моделей объяснения.

1. Способность к кумулятивному обобщению. Хотя любая модель в своем становлении в качестве объясняющей теории имеет вначале весьма ограниченную эмпирическую базу, ее гносеологическая ценность обнаруживается в том, что она способна к экстенсивному расширению, к экстраполяции на новые области фактов. Механизм обобщения при этом не предполагает изменения исходной семантики теории или порождения новой семантики.

2. Способность к предсказанию. В отличие от моделей описания (которые способны лишь к количественному предсказанию), объясняющие модели способны к предсказанию принципиально новых качественных эффектов, сторон, элементов. Благодаря тому, что модель представляет собой целостную концептуальную систему, она заключает в себе всю полноту своих элементов, сторон, отношений. Поскольку, с другой стороны, наш опыт всегда неполон, незакончен, то модель оказывается «богаче», чем имеющийся в нашем распоряжении эмпирический материал. Иначе говоря, концептуальная система в своей структуре может содержать такие элементы, стороны, связи, которые еще не обнаружил опыт. Модель, таким образом, позволяет предвосхитить новые факты.

Известно, например, что в конце прошлого века Г.С. Федоров на основе исследования полной симметрии кристаллов предсказал существование новых кристаллических форм. Более того, кристаллическая модель оказалась орудием установления множества всех возможных в природе кристаллов. Поскольку было установлено, что множество всех мыслимых кристаллов должно подчиняться определенным математическим соотношением, то кристаллография оказалась способной к точному прогнозированию того, какого рода кристаллы могут быть созданы в том или ином случае. Эшби подчеркивает: «Когда мы определяем кристалл как нечто, обладающее определенными свойствами симметрии, то, по сути дела, утверждаем, что кристалл должен иметь некоторые другие свойства симметрии, что последнее необходимо вытекает из первых, иначе говоря, что они суть те же свойства, но рассматриваемые с другой точки зрения.

Таким образом, математическая кристаллография образует своего рода основу или структуру, более емкую и богатую, чем эмпирический материал...».

Яндекс.Метрика