Математическое моделирование

Версия номинализма, согласно которой математика есть просто язык, сам по себе не имеющий никакого онтологического содержания, кажется, дает слишком легкое решение вопроса. Если математические уравнения, которые мы накладываем на определенную экспериментально фиксируемую область с целью упорядочения фактуальной информации и перевода ее на точный количественный язык, — если эти уравнения есть лишь чисто ментальная конструкция ума, то чем объяснить их поразительную «предопределенность», приспособленность к фактическим ситуациям? Если об абстрактных объектах ничего не известно, кроме соотношений, которые существуют между ними в рамках формальной системы и, следовательно, их природа не дает указаний на какую бы то ни было связь с внеязыковой реальностью, если их единственная спецификация состоит в том, что они согласуются со структурой системы, определяемой исходными аксиомами, то все же остается вопрос: «Что побуждает нас принять за основу определенную избранную нами систему аксиом? Непротиворечивость для этого необходима, но не достаточна».

То, что математика есть некий особый язык, используемый человеком в процессе познания, это очевидно. Поэтому уже один только перевод какой-либо качественной задачи на четкий, однозначный и богатый по своим возможностям язык математики позволяет увидеть задачу в новом свете, прояснить ее содержание.

Однако математика дает и нечто большее. Характерным для математического способа познания является использование «дедуктивного звена», т. е. манипулирование с объектами по определенным правилам и получение таким путем новых результатов. И наконец, любая нетривиальная система математических объектов заключает в себе явно или неявно некоторую исходную семантику, некоторый способ «видения мира». Именно этим в первую очередь определяется ценность математического моделирования реальности. Два типа математических моделей: модели описания и модели объяснения. Обращение к истории науки позволяет выдели ть два типа теоретических схем, основанных на двух видах математических моделей, применяемых в конкретных науках и технических приложениях, — моделях описания и моделях объяснения. В истории науки примером модели первого вида может служить схема эксцентрических кругов и эпициклов Птолемея. Математический формализм ньютоновской теории тяготения является соответствующим примером модели второго вида.

Модель описания не предполагает каких бы то ни было содержательных утверждений о сущности изучаемого круга явлений. Известно, что птолемеевская модель обеспечивала в течение почти двух тысяч лет возможность поразительно точного вычисления будущих наблюдений астрономических объектов. Ошибочность птолемеевской системы заключалась вовсе не в самой математической модели, а в том, что с используемой моделью связывались физические гипотезы, и к тому же такие, которые лишены научного содержания (в частности, тезис о «совершенном» характере движения небесных тел).

Для моделей описания характерно то, что здесь соответствие между формальной и физической структурой не обусловлено какой-либо закономерностью и носит характер единичного факта. Отсюда глубина восполнения модели описания для каждого объекта или системы различна и не можег быть предсказана теоретически. Задача определения глубины восполнения решается поэтому всегда эмпирически.

Применимо ли понятие истины и лжи для моделей описания? В строгом смысле, по-видимому, нет. К ним применим скорее критерий полезности, чем истинности. Модели описания бывают «хорошими» и «плохими». «Плохая» модель — это либо слишком элементарная модель (в этом случае она тривиальна), либо слишком сложная (и тогда она малоэффективна ввиду своей громоздкости). «Хорошая» модель — это модель, сочетающая в себе достаточную простоту и достаточную эффективность.

Яндекс.Метрика