Философия науки

Идеализация

Из сказанного вытекает, что точность и совершенство математических конструкций является чем-то эмпирически недостижимым. Поэтому, для того, чтобы создать конструкт, мы должны произвести еще одну модификацию нашего мысленного образа вещи. Мы не только должны трансформировать объект, мысленно выделив одни свойства и отбросив другие, мы должны к тому же выделенные свойства подвергнуть такому преобразованию, что теоретический объект приобретет свойства, которые в эмпирическом опыте не встречаются. Рассмотренная трансформация образа и называется идеализацией. В отличие от обычного абстрагирования, идеализация делает упор не на операции отвлечения, а на механизме пополнения.

Идеализация начинается с процесса практического или мысленного экспериментирования с самой вещью. осуществляемого в соответствии с «природой вещей». Так, человек на практике обнаруживает, что, например, геометрические соотношения в вещи шарообразной формы (скажем, отношение радиуса к площади поверхности) не изменяются от того, если мы изменим цвет, температуру (в некотором диапазоне), а также ряд других характеристик вещи. Геометрические свойства шара не будут меняться от того, будет ли он сделан из меди, глины, дерева, резины и т. д. Вот эта реально обнаруживаемая инвариантность reoметрических свойств различных вещей при переходе от предмета сданным качественным составом к предметам другого качественного состава и является объективной основой процесса идеализации.

Рассмотрим теперь такой важный шаг процесса идеализации, как «предельный переход». Действительно ли в процессе первичной теоретизации в геометрии таких конструктов, как точка, прямая, плоскость, или в физике таких конструктов, как абсолютно непроводящее тело, идеальный газ, абсолютно черное тело и т. п. мы пользуемся приемом, называемым «переходом»? Если рассматривать процесс формирования теоретических конструктов чисто абстрактно, то такой переход как будто действительно имеет место. Но если подойти к делу с точки зрения реального функционирования научного знания, то можно обнаружить несколько иную картину. Выше обращалось внимание на то, что различные предметы шарообразной формы в разной степени приближаются к «идеальному шару»: одни из них лишь грубо и приближенно можно принять за геометрическую фигуру, другие же соответствуют ей с гораздо большей точностью. Пользуясь возможностями современной техники, мы можем значительно увеличить желаемую точность. Воспроизведенная в материале геометрическая фигура может настолько точно соответствовать своему идеальному образу, что даже весьма тщательные измерения, проводимые на данной фигуре, не позволяют обнаружить погрешности материальной конструкции. Здесь наблюдается, таким образом, полное совпадение (в пределах ошибки измерения) данных эксперимента и теоретических предсказаний.

Какой же эмпирический смысл (т. е. смысл, отображающий эмпирически обнаруживаемые познавательные ситуации) вкладывается в тезис, когда утверждается, что никакая материальная конструкция никогда не может приблизиться к идеально точному математическому объекту? На практике это может означать, что какого бы полного согласия на опыте между математической абстракцией и конкретной фигурой мы ни имели, всякий раз может случиться, что повышение точности наших средств измерения приведет к обнаружению расхождения между свойствами реальной модели и ее идеального образца. Однако, повысив качество обработки материала, мы можем ликвидировать это расхождение. Это тем не менее не меняет ситуации в принципе, а лишь подвигает на один шаг проблему дальше, ведь повысив точность измерения, мы вновь обнаружим указанное расхождение. Принципиально важным является то, что существует абсолютный предел (обусловленный законами природы) приближения любой материальной модели к ее идеальному образцу. Ведь даже траектория светового луча не может представлять собой идеальную прямую, ибо свет есть поток квантов, а движение кванта, как учит квантовая механика, не может быть соотнесено с какой-то определенной, классически понимаемой траекторией.