Философия науки

Идеализация

Важнейшим методом теоретического познания в науке является идеализация. Впервые этот метод был рассмотрен известным австрийским историком науки Э. Махом. Он писал: «Существует важный прием, заключающийся в том, что одно или несколько условий, влияющих количество на результат, мысленно постепенно уменьшают количественно, пока оно не исчезнет, так что результат оказывается зависимым от одних только остальных условий. Этот процесс физически часто не осуществим; и его можно поэтому назвать процессом идеальным... Все общие физические понятия и законы — понятие луча, диоптрические законы, закон Мариотта и т. д. — получены через идеализацию...

Такими идеализациями являются в рассуждениях Карно абсолютно непроводящее тело, полное равенство температур соприкасающихся тел, необратимые процессы, у Кирхгофа — абсолютно черное тело и т. д.».

Какова природа идеализации? Как она возникает, и что она отражает по своему содержанию? Рассмотрим следующую группу предметов: арбуз, воздушный шар, футбольный мяч, глобус и шарикоподшипник. По какому признаку мы можем объединить их в один класс вещей? У всех у них разная масса, цвет, химический состав, функциональное назначение. Единственное, что их может объединить, так это то, что они сходны по «форме». Очевидно, что все они «шарообразны». Нашу интуитивную убежденность в сходстве этих вещей по форме, которую мы черпаем из показаний наших органов чувств, мы можем перевести на язык рационального рассуждения. Мы скажем: указанный класс вещей имеет форму шара.

Исследованием геометрических форм и их соотношений занимается специальная наука геометрия. Как же геометрия выделяет объекты своего исследования и каково соотношение этих теоретических объектов с их эмпирическими прообразами? Вопрос этот занимает философскую мысль со времен Платона и Аристотеля.

Чем отличается объект геометрии —точка, прямая, плоскость, крут, шар, конус и т. д. от соответствующего ему эмпирического коррелята? Во-первых, геометрический объект, например, шар, отличается от мяча, глобуса и т. п. тем, что он не предполагает наличие у себя физических, химических и прочих свойств, за исключением геометрических. На практике объекты с такими странными особенностями, как известно, не встречаются. В силу этого факта и принято говорить, что объект математической теории есть объект теоретический, а не эмпирический, что он есть конструкт, а не реальная вещь.

Во-вторых, теоретический объект отличается от своего эмпирического прообраза тем, что даже те свойства вещи, которые мы сохраняем в теоретическом объекте после процесса модификации образа (в данном случае геометрические свойства), не могут мыслиться такими, какими мы их встречаем в опыте. В самом деле, измерив радиус и окружность арбуза, мы замечаем, что отношение между полученными величинами в большей или меньшей степени отличается от того отношения, которое вытекает из геометрических рассуждений. Мы можем, однако, сделать деревянный или металлический шар, пространственные свойства которого будут значительно ближе к соответствующим свойствам «идеального» шара. Не приведет ли прогресс техники и процедур измерения к тому, что человек сможет физически воспроизвести тот или иной геометрический конструкт? Природа вещей такова, что такая возможность в принципе нереализуема. Нельзя вырастить арбуз, который по своей форме был бы столь же «правильным», как подшипник, этому препятствуют законы живого. Нельзя создать такой подшипник, который бы абсолютно точно соответствовал геометрическому шару, этому препятствует молекулярная природа вещества. Отсюда следует, что хотя на практике мы можем создавать вещи, которые по своим геометрическим свойствам все больше и больше приближаются к идеальным структурам математики, все же надо помнить, что на любом этапе такого приближения между реальным объектом и теоретическим конструктом лежит бесконечность.