Философия науки

Математическое моделирование

Математическая модель представляет собой абстрактную систему, состоящую из набора математических объектов. В самом общем виде под математическими объектами современная философия математики подразумевает множества и отношения между множествами и их элементами. Различия между отдельными объектами главным образом определяются тем, какими дополнительными свойствами (т. е. какой структурой) обладают рассматриваемые множества и соответствующие отношения.

В простейшем случае в качестве модели выступает отдельный математический объект, т. е. такая формальная структура, с помощью которой можно от эмпирически полученных значений одних параметров исследуемого материального объекта переходить к значению других без обращения к эксперименту. Например, измерив окружность шарообразного предмета, по формуле объема шара вычисляют объем данного предмета.

Очевидно, ценность математической модели для конкретных наук и технических приложений состоит в том, что благодаря восполнению ее конкретно-физическим или каким-либо другим предметным содержанием она может быть применена к реальности в качестве средства получения информации. С другой стороны, только благодаря тому, что нам удается подбирать такие объекты (процессы, явления), которые обладают способностью служить восполнением модели, мы можем посредством данной модели получить о них полезную информацию.

Как отмечают Холл и Фейджин1, для того чтобы объект можно было достаточно успешно изучать с помощью математических методов, он должен обладать рядом специальных свойств. Во-первых, должны быть хорошо известны имеющиеся в нем отношения, вовторых, должны быть количественно определены существенные для объекта свойства (причем их число не должно быть слишком большим), и в-третьих, в зависимости от цели исследования должны быть известны при заданном множестве отношений формы поведения объекта (которые определяются законами, например, физическими, биологическими, социальными).

По существу, любая математическая структура (или абстрактная система) приобретает статус модели только тогда, когда удается констатировать факт определенной аналогии структурного, субстратного или функционального характера между нею и исследуемым объектом (или системой). Другими словами, должна существовать известная согласованность, получаемая в результате подбора и «взаимной подгонки» модели и соответствующего «фрагмента реальности». Указанная согласованность существует лишь в рамках определенно]© интервала абстракции. В большинстве случаев аналогия между абстрактной и реальной системой связана с отношением изоморфизма между ними, определенным в рамках фиксированного интервала абстракции.

Для того, чтобы исследовать реальную систему, мы замещаем ее (с точностью до изоморфизма) абстрактной системой с теми же отношениями; таким образом задача становится чисто математической. Например, чертеж может служить моделью для отображения геометрических свойств моста, а совокупность формул, положенных в основу расчета размеров моста, его прочности, возникающих в нем напряжений и т. д., может служить моделью для отображения физических свойств моста.

Что же представляют собой в гносеологическом смысле математические модели, т. е. математические структуры, по отношению к реальности независимо от их конкретной интерпретации?